InGaAs/InP quantum well infrared photodetector integrated on Si substrate by Mo/Au metal-assisted wafer bonding

نویسندگان

  • MIN-SU PARK
  • MOHSEN REZAEI
  • IMAN NIA
  • ROBERT BROWN
  • SIMONE BIANCONI
  • CHEE LEONG TAN
  • HOOMAN MOHSENI
چکیده

Integration of an InGaAs/InP quantum well infrared photodetector (QWIP) onto a Si substrate was successfully demonstrated via a metal-assisted wafer bonding (MWB) using a Mo/Au metal scheme. The Mo/Au/Mo layer, situated between the QWIP structure and the Si, has shown a well-ordered lamination. It provides a smooth surface with a roughness of about 0.8 nm, as measured by a scanning electron microscope (SEM) and atomic force microscopy (AFM). The results on crystalline quality evaluated by Raman spectroscopy and X-ray diffraction (XRD) imply that the MWB could be achieved without any measurable material degradation and residual strain. Temperature dependence of dark current revealed that there is no noticeable change in the dark current properties of the QWIP after bonding on Si, despite that the quantum wells are only 200 nm away from the bonding interface. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (040.5160) Photodetectors; (230.5590) Quantum-well, -wire and -dot devices; (040.6040) Silicon. References and links 1. B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993). 2. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355–4391 (2003). 3. S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, “1024 × 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications,” Semicond. Sci. Technol. 20(5), 473–480 (2005). 4. Q. Huang, G. Xu, Y. Yuan, X. Cheng, and L. Luo, “Development of indium bumping technology through AZ9260 resist electroplating,” J. Micromech. Microeng. 20(5), 055035 (2010). 5. J. Jiang, S. Tsao, T. O’Sullivan, M. Razeghi, and G. J. Brown, “Fabrication of indium bumps for hybrid infrared focal plane array applications,” Infrared Phys. Technol. 45(2), 143–151 (2004). 6. J. Wu, Q. Jiang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates,” ACS Photonics 3(5), 749–753 (2016). 7. S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si substrate,’,” ACS Photonics 1(7), 638–642 (2014). 8. J. Yua, Y. Wang, J. Q. Lu, and R. J. Gutmann, “Low-temperature silicon wafer bonding based on Ti/Si solidstate amorphization,” Appl. Phys. Lett. 89(9), 092104 (2006). 9. R. H. Horng, S. H. Huang, D. S. Wuu, and C. Y. Chiu, “AlGaInP/mirror/Si light-emitting diodes with vertical electrodes by wafer bonding,” Appl. Phys. Lett. 82(23), 4011–4013 (2003). 10. M. S. Park, D. M. Geum, J. H. Kyhm, J. D. Song, S. Kim, and W. J. Choi, “InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off,” Opt. Express 23(21), 26888–26894 (2015). 11. D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications,” Sci. Rep. 6(1), 20610 (2016). 12. E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009). 13. E. Jing, B. Xiong, and Y. Wang, “Low-temperature Au–Si wafer bonding,” J. Micromech. Microeng. 20(9), 095014 (2010). Vol. 8, No. 2 | 1 Feb 2018 | OPTICAL MATERIALS EXPRESS 413 #306586 https://doi.org/10.1364/OME.8.000413 Journal © 2018 Received 3 Oct 2017; revised 1 Dec 2017; accepted 4 Dec 2017; published 18 Jan 2018 14. A.G. Bacaa, F. Renb, J.C. Zolper, R.D. Briggsa and S.J. Peartonc, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308−309, 599−606 (1997). 15. A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 2036–2039 (2009). 16. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma, “Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility,” Nat. Mater. 12(4), 344–350 (2013). 17. P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance Dependence of InGaP/InGaAs/GaAs pHEMT’s on Gate Metallization,” IEEE Electron Device Lett. 20(11), 554–556 (1999). 18. Y. Kitaura, T. Hashimoto, T. Inoue, K. Ishida, N. Uchitomi, and R. Nii, “Long-term reliability of Pt and Mo diffusion barriers in Ti-Pt-Au and Ti-Mo-Au metallization systems for GaAs digital integrated circuits,” J. Vac. Sci. Technol. 12(5), 2985–2991 (1994). 19. A. Gupta, D. Paramanik, S. Varma, and C. Jacob, “CVD growth and characterization of 3C-SiC thin films,” Bull. Mater. Sci. 27(5), 445–451 (2004). 20. M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p–i– p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014). 21. E. Altin, M. Hostut, and Y. Ergun, “Barrier lowering effect and dark current characteristics in asymmetric GaAs/AlGaAs multi quantum well structure,” Appl. Phys., A Mater. Sci. Process. 105(4), 833–839 (2011).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of inverted InGaAs MSM array on Si substrate through low temperature wafer bonding

An array of inverted InGaAs metal–semiconductor–metal (MSM) photodetectors has been integrated into a silicon substrate using a low temperature In–Au wafer bonding technique. The total thickness of the bonding metal layers is less than 1 mm. It is shown that the photocurrent of the back illuminated InGaAs MSM photodetectors after bonding increases by 70% compared to the front illuminated MSM me...

متن کامل

Low-Cost High-Efficiency Solar Cells

III-V compound multijunction solar cells enable ultrahigh efficiency performance in designs where subcells with high material quality and high internal quantum efficiency can be employed. However the optimal multijunction cell bandgap sequence cannot be achieved using lattice-matched compound semiconductor materials. Most current compound semiconductor solar cell design approaches are focused o...

متن کامل

Photo-spectrometer based on the integration of InP/InGaAs photodetectors onto a Silicon-on- insulator etched diffraction grating

─We present the design and simulation results of an integrated wavelength demultiplexer. The device’s major components, which include the Silicon-on-insulator (SOI) etched diffraction grating and waveguide integrated InP/InGaAs MSM photodetectors are discussed in detail. The Silicon-on-insulator diffraction grating is fabricated using standard CMOS processes. The photodetectors are integrated o...

متن کامل

Solid-state reaction-mediated low-temperature bonding of GaAs and BnP wafers to Si substrates

We report a low-temperature wafer bonding method for the realization of integration of GaAsand InP-based optoelectronic devices with Si microelectronic devices. This method uses a Au-Ge eutectic alloy as the bonding material sandwiched between GaAs and Si wafers, and between InP and Si wafers. The bonding process was carried out at 280-300 “C by taking advantage of the low-temperature solid-sta...

متن کامل

High performance InAs quantum dot lasers on silicon substrates by low temperature Pd-GaAs wafer bonding

Articles you may be interested in MBE growth of P-doped 1.3 μm InAs quantum dot lasers on silicon Low-threshold high-quantum-efficiency laterally gain-coupled InGaAs/AlGaAs distributed feedback lasers Appl. 1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature Appl.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018